CFD simulation of 20 MW th CCL pilot plant reactors

A. Stroh (Technische Universität Darmstadt)
M. Balfe (GE Carbon Capture GmbH)
A. Nikolopolous (CERTH)

2nd Public Workshop of the SCARLET project;
23 March 2017, Darmstadt, Germany
Motivation

Advantages of CFD tools

- Generation of numerical results within reasonable time → high computational cluster Lichtenberg

- Very flexible and well developed software tools e.g. Ansys Fluent™, OPEN FOAM → Implementation of customized models using UDFs

- Geometrical design studies quicker and more economic in comparison to experiments

- No expensive measurement technology required

Challenges for multiphase flows

- Complex interaction between fluid and particle phase

- Implementation of realistic sorbent properties → modeling approaches or experimental sample data required

- Compromise between accuracy and computational time
Applied modeling approaches

Overview of numerical methods

- Euler-Lagrange
 - Stochastic collision detection
 - MPIC (Barracuda, FLUENT)
 - Deterministic collision detection
 - DEM (FLUENT, DEMEST, OpenFoam)

- Euler-Euler
 - Kinetic theory of granular flows
 - Multi-Fluid model (FLUENT, CERTH)
CFD simulation of 20 MW$_{th}$ circulating fluidized bed carbonator using the coarse grain discrete element method

Alexander Stroh (Technische Universität Darmstadt)

2nd Public Workshop of the SCARLET project; 23 March 2017; Darmstadt, Germany
Outline

- DEM Modeling
- 20 MW\textsubscript{th} carbonator results
- Conclusion
DEM Modeling

Collision modeling

Normal force: \[F^n = (k \delta + \gamma(v_{ij} \cdot n_{ij})) n_{ji} \]

\[F^n \]
Particle \(j \)
\[F^n \]
Particle \(i \)

\[\delta \]

\[F^n \rightarrow \bullet \rightarrow F^n \]
Dashpot

\[F^n \rightarrow \bullet \rightarrow F^n \]
Spring

Tangential force: \[F^t = F^n \mu \]

\[\mu = f(v_{ij}) \] of collision partner

Cold flow experiments

Spouting bed regime

Bubbling bed regime
DEM Modeling

Particle modeling

1) Multicomponent particle
2) Ash particle

Ash particle is not participating in gas-solid reaction
1. Verification → 2. Validation with experiments → 3. Scale-up to 20 MW\textsubscript{th}

Charitos et al. for $X_{\text{MAX}} = 0.15 = \text{const.}$

\[
\frac{dX}{dt} = k_s S_0 (X_{\text{max}} - X)^2 (C_{CO_2} - C_{CO_2, eq})
\]

- Analytical
- CFD

- $C_{CO_2} - C_{CO_2, eq} \approx 1.179 \text{ mol/m}^3$
- $C_{CO_2} - C_{CO_2, eq} \approx 0.512 \text{ mol/m}^3$
- $C_{CO_2} - C_{CO_2, eq} \approx 0.220 \text{ mol/m}^3$
1. Verification → 2. Validation with experiments → 3. Scale-up to 20 MW\textsubscript{th}

DEM Modeling

Cold flow model

- 3.1 m
- 1.57 m
- 0.49 m

Graphs showing particle velocity vs. radial position.
DEM Modeling

1. Verification → 2. Validation with experiments → 3. Scale-up to 20 MWth

Gas concentrations at reactor outlet

<table>
<thead>
<tr>
<th></th>
<th>Exp.</th>
<th>Sim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>O₂</td>
<td>9.3</td>
<td>9.8</td>
</tr>
<tr>
<td>N₂</td>
<td>80.9</td>
<td>80.6</td>
</tr>
<tr>
<td>H₂O</td>
<td>7.2</td>
<td>7.4</td>
</tr>
</tbody>
</table>
DEM Modeling

1. Verification → 2. Validation with experiments → 3. Scale-up to 20 MW_{th}

319,385 structured cells
orthogonal cell quality > 0.928

Surface

<table>
<thead>
<tr>
<th></th>
<th>CFD boundary description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>distributor</td>
</tr>
<tr>
<td>2</td>
<td>from internal circulation</td>
</tr>
<tr>
<td>3</td>
<td>outlet</td>
</tr>
<tr>
<td>4</td>
<td>from calciner</td>
</tr>
<tr>
<td>5</td>
<td>Sorbent staging port 1</td>
</tr>
<tr>
<td>6</td>
<td>Sorbent staging port 2</td>
</tr>
</tbody>
</table>
20 MW\textsubscript{th} carbonator results

Pressure & solids distribution

\begin{align*}
\text{Pressure} & \quad \text{solids/m}^3 \\
\text{1000 kg/m}^2 & \quad 0.30 \\
\text{800 kg/m}^2 & \quad 0.28 \\
\end{align*}

\begin{align*}
\text{CO}_2 \text{ mass fraction} & \quad \text{kg CO}_2 / \text{kg Gas} \\
\text{1000 kg/m}^2 & \quad 0.16 \\
\text{800 kg/m}^2 & \quad 0.15 \\
\end{align*}
20 MW\textsubscript{th} carbonator results

CO\textsubscript{2} mass fraction along reactor center axis

- 1000 kg/m2
- 800 kg/m2

CO\textsubscript{2} concentration along reactor cross sections

- 1000 kg/m2
- 800 kg/m2

\[\eta\text{\textsubscript{absorb}} \approx 88\% \]
Conclusion

- Developed coarse grain CFD-DEM model successfully verified and validated with experimental data
- Two numerical cases investigated with 1000 kg/m² and 800 kg/m² specific inventory for 20 MW\textsubscript{th}
 - solid concentration directly influences CO\textsubscript{2} capture
 - Carbonator absorption efficiency approximately 88 % for both specific inventories
- Reasonable computational time of ~ 30 days for industrial scale size unit using 32 parallel CPUs
Thank you for your attention!

M.Sc. Alexander Stroh
L1|01 room 342
+49 6151 / 1622678
alexander.stroh@est.tu-darmstadt.de